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Introduction

Molecular Mechanics uses classical type models to predict the energy of a molecule as a function of
its conformation (or nuclear configuration, R). This allows one to predict relative energies between
different conformations or between different molecules, as well as equilibrium geometries and
transition states, which correspond to potential energy surface local minima and first-order saddle
points. This family of methods uses Taylor and Fourier series type expansions and additional
terms, all of which involve empirically fitted parameters. The computational cost of molecular
mechanics is the lowest of any detailed computational chemistry method.

Recall the ro-vibrational energy levels of a diatomic are given by
1 1 1 -
E =~ U(Re)+hz/e(v+§)—huexe(v+§)2+hBeJ(J+1)—hae(v+§)J(J+1)—hDEJQ(J+1)2—|—Y00. (1)

This gives the ro-vibrational energy as a function of several parameters (the spectroscopic con-
stants, Re, Ve, VeZe, Be, De, e, Yyo) and quantum numbers (v, J). High-resolution spectra can
be fit to such expressions to deduce the spectroscopic constants.

Molecular mechanics starts with much simpler (classical) expressions for the energy as a func-
tion of nuclear coordinates, and applies to ground states only (does not directly account for elec-
tronic, vibrational, or rotational excitation, although the atoms can be given initial velocities).
In a classical picture, there are no special quantized energy levels v and J, and we go back to a
Taylor-series expansion of the potential energy as a function of nuclear coordinates. For a diatomic
molecule, we have simply:
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B(R) = (R - S R—R) 4 ——(R—R)P+ - 2
(R) = U(Re) + 75 (R = Re) + 5o (R = Re)* + 57 g (R— Ro)’ (2)

where we have already identified the second derivative at R = R, as the harmonic oscillator force
constant k, and the third derivative would be related to the anharmonic constant w.z. (which



includes a fourth-derivative term, also). The derivatives could therefore be treated as parameters
which could be found by experiment:

E(R) =ko(R— R.)* + ks(R— R.)> + - - (3)

where the first derivative term drops out because the expansion is about R = R,., where the
gradient is zero, and the arbitrary zero of energy U(R,) has been set to zero. The constants 1/n!
have been absorbed into the k,, constants.

Of course, finding parameters like ko, k3, R. from experiment is useless for modeling the
diatomic! The central idea of molecular mechanics is that these constants are transferrable to
other molecules. Most C-H bond lengths are 1.06 to 1.10 A in just about any molecule, with
stretching frequencies between 2900 and 3300 cm™!. This means a C—H bond has a similar R, and
v, for any molecule. This strategy is refined by considering, e.g., sp® carbons as different from sp?
carbons. Some example atom types are given in Fig. 1.

Molecular mechanics expresses the total energy as a sum of Taylor series expansions for stretches
for every pair of bonded atoms, and adds additional potential energy terms coming from bending,
torsional energy, van der Waals enerqgy, electrostatics, and cross terms:

E = Estr + Ebend + Etors + Evdw + Eel + Ecross- (4)

By separating out the van der Waals and electrostatic terms, molecular mechanics attempts
to make the remaining constants more transferrable among molecules than they would be in a
spectroscopic force field.

History

e D. H. Andrews (Phys. Rev., 1930) proposed extending spectroscopic force field ideas to
doing molecular mechanics

e . H. Westheimer (1940) performed the only molecular mechanics calculation done by hand
to determine the transition state of a tetrasubstituted biphenyl

Census bureau receives first commercial supercomputer (1950)

e J. B. Hendrickson (1961) performs conformational analysis of larger than 6 membered rings

K. B. Wiberg (1965) publishes first general molecular mechanics type program with ability
to find energy minimum

N. L. Allinger [Adv. Phys. Org. Chem. 13, 1 (1976)] publishes the first (MM1) in a series
of highly popular force fields; the second, MM2, follows in 1977

Many other force field methods have been developed over the years



Figure 1: Atom Types for MM2

Table 2.1 MM2(91) atom types
Type Symbol Description Type Symbol Description
I C sp>-carbon 28 H  enol or amide
2 C sp2-carbon, alkene 48 H  ammonium
3 C sp2-carbon, carbonyl, imine 36 D deuterium
4 C sp-carbon 20 Ip lone pair
22 C cyclopropane 15 S sulfide (R,S)
29 C radical 16 S+  sulfonium (R;S™)
30 C+ carbocation 17 S sulfoxide (R,SO)
38 C sp>2-carbon, cyclopropene 18 S sulfone (R,S03)
50 C sp>-carbon, aromatic 42 S sp2-sulfur, thiophene
56 C sp*-carbon, cyclobutane 11 F fluoride
57 C sp2-carbon, cyclobutene 12 Cl  chloride
58 C carbonyl, cyclobutanone 13 Br  bromide
67 C carbonyl, cyclopropanone 14 1 iodide
68 C carbonyl, ketene 26 B boron, trigonal
71 C ketonium carbon 27 B boron, tetrahedral
8 N sp-nitrogen 19 Si  silane
9 N sp2-nitrogen, amide 25 P phosphine (R3P)
10 N sp-nitrogen 60 P phosphor, pentavalent
37 N azo or pyridine (-N=) 51 He  helium
39 N+ sp>-nitrogen, ammonium (R,N*1) 52 Ne neon
40 N spZ2-nitrogen, pyrrole 53 Ar  argon
43 N azoxy (-N=N-0) 54 Kr  krypton
45 N azide, central atom 55 Xe  xenon
46 N nitro (-NO5) 31 Ge  germanium
72 N imine, oxime (=N-) 32 Sn tin
6 0 sp-oxygen 33 Pb  lead (R4Pb)
7 O sp2-oxygen, carbonyl 34 Se  selenium
41 0 sp2-oxygen, furan 35 Te  tellurium
47 o~ carboxylate 59 Mg magnesium
49 O epoxy 61 Fe  iron(ll)
69 0O amine oxide 62 Fe  iron(IIl)
70 (0] ketonium oxygen 63 Ni  nickel(II)
5 H hydrogen, except on N or O 64 Ni  nickel(IIT)
21 H alcohol (OH) 65 Co  cobalt (II)
23 H amine (NH) 66 Co  cobalt (IIT)
24 H carboxyl (COOH)

Note that special atom types are defined for carbon atoms involved in small rings, like cyclopropane and

cyclobutane. The reason for this will be discussed in Section 2.2.2.

From Jensen’s Introduction to Computational Chemistry



Stretch Energy

The stretching energy has been discussed above. The stretching potential for a bond between
atoms A and B is given by the Taylor series

E(RAB) — k§43<RAB . R()‘lB)Q + k§B<RAB . R[z)‘lB)S + ka<RAB . R[z)‘lB)4 4. (5)

and different force field methods retain different numbers of terms in this expansion. Such expan-
sions have incorrect limiting behavior: at large distances, higher powers of (R4Z — R4'®) dominate,
leading F(R4?) to go to positive or negative infinity, depending on the sign of k5.

A simple function with correct limiting behavior is the Morse potential
Egw(R — Ry) = D[1 — eVF/2P(R-Fo)j2. (6)

where D is the dissociation energy. However, this potential gives very small restoring forces for
large R and therefore causes slow convergence in geometry optimization. For this reason, the
truncated polynomial expansion is usually preferred. Figure 2 compares the exact C—H stretching
potential for CH, to a Morse potential and to second and fourth order polynomials.

Bend Energy

Bending energy potentials are usually treated very similarly to stretching potentials; the energy
is assumed to increase quadratically with displacement of the bond angle from equilibrium.

Ebend(eABC o 964BC> — kABC(eABC’ . 66430)2 (7)

An unusual thing happens for #45¢ = 180°: the derivative of the potential needs to go to zero.
This is sometimes enforced (Fig. 3).

The potential for moving an atom out of a plane is sometimes treated separately from bending
(although it also involves bending). An out-of-plane coordinate (either y or d) is displayed in
Fig. 4). The potential is usually taken quadratic in this out-of-plane bend,

Ebend—oop (XB> - kB (XB)2' (8>

Torsional Energy

The torsional energy term attempts to capture some of the steric and electrostatic nonbonded
interactions between two atoms A and D which are connected through an intermediate bond B—C
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Figure 2: Stretching Potential for CHy (from Jensen)

80
= 60f
[«
E
8 b
Z
& 40|
[}
C
UJ -

20 -

0_

! | L { L I L | £ | ) | n | f
0.4 0.2 0.0 0.2 0.4 0.6 0.8
AR (A)

Figure 2.1 The stretch energy for CHy



Figure 3: Bending Potential for HoO (from Jensen)
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Figure 2.5 The bending energy for H,O

Figure 4: Out-of-plane Coordinate (from Jensen)

Figure 2.6 Out-of-plane variable definitions



Figure 5: Torsion Angle (from Jensen)
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as A-B-C-D. The torsional angle w (also often denoted 7) is depicted in Fig. 5. It is the angle
betwen the two planes defined by atoms A, B, and C and by B, C, and D.

The torsional potential is not expanded as a Taylor series because the torsional angle can go
far from equilibrium. Fourier series are used instead:

Etors(WABCD) — Z VnABCDCOS(TLwABCD). (9)

n=1

Often this is rewritten to make sure the energy is non-negative, and typically the number of terms
is 3 (bad for inorganic chemists who need n = 4 for octahedral complexes!):

1 1 1
Etors(WABCD> — 5VleBCD [1+COS(MABCD)]+§‘/2ABCD[1—COS(QwABCD)]+§%ABCD[1+COS(SWABCD)].
(10)
For a molecule like ethylene, rotation about the C=C bond must be periodic by 180°, so only even
terms n = 2,4, ... can occur. For a molecule like ethane, only terms n = 3,6,9, ... can occur.

van der Waals Energy

The van der Waals energy arises from the interactions between electron clouds around two non-
bonded atoms. At short range, this interaction is strongly repulsive, while at intermediate range,
the interaction is attractive. As R — oo, the interaction of course dies off to zero. The attraction
is due to electron correlation: a fluctuation of the electrons on one atom produces a temporary
dipole which induces a complementary dipole on the other atom. The resulting attractive force is
called a “dispersion” or “London” force.

van der Waals energies are usually computed for atoms which are connected by no less than
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Figure 6: Example Torsional Potentials (from Jensen)
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Figure 2.8 Torsional energy functions



Figure 7: Example Torsional Potential (from Jensen)
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two atoms (e.g., 1-4 interactions between A and D in A-B-C-D and higher). Interactions betwen
atoms closer than this are already accounted for by stretching and/or bending terms.

At intermediate to long ranges, the attraction is proportional to 1/RS. At short ranges, the
repulsion is close to exponential. Hence, an appropriate model of the van der Waals interaction is

E
AB -DR
EVdW<R ) = C@ — ﬁ (11)
One technical problem with the above “Buckingham” or “Hill” potential is that it goes to negative
infinity for very small R. Since the van der Walls interaction is long range, it becomes the domi-
nant cost of a force-field computation. It can be speeded up substantially by a more economical
expression, the Lennard-Jones potential

ot - [ ()" 2]

The R~'? term is easier to compute than the exponential because no square roots need to be taken
to get R. It is also possible to use the form of a Morse potential with much smaller D and «
parameters (and a larger Ry) than used for stretches. Figure 8 presents a comparison of various
van der Waals potentials.

Nonbonded interactions between hydrogen and nitrogen or oxygen are much stronger (1-5
kcal/mol) than normal van der Waals interactions (0.1-0.2 kcal/mol) and can be treated by special
hydrogen bonding terms.

Electrostatic Energy

Electrostatic terms describe the Coulomb interaction between atoms A and B with partial charges,
according to
QQ"

cRAB
where € is an effective dialectric constant which is 1 in vacuum but higher when there are in-
termediate atoms or solvent. Usually € is picked fairly arbitrarily; higher values or so-called
“distance-dependent dialectrics” (e = ¢g RP) account for “screening” and kill off the electrostatic
contributions faster, making them easier to compute.

E.(R"P) (13)

Electrostatic terms are important in, e.g., carbonyls, where the carbon has a partial positive
charge and oxygen is partially negative. Hydrogen bonding is also sometimes accounted for by
partial charges. (Of course, quantum mechanically, it is hard to rigorously and unambiguously
define an atomic charge).

10



Figure 8: Example van der Waals Potentials (from Jensen)
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Figure 2.9 Comparison of E 4y functionals for the H,—He potential
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A slightly different approach to partial charges is to consider polarized bonds as dipoles, and
compute the electrostatic interaction between these dipoles (e.g., MM2 and MM3):
p
Eq(RAP) = C(RABY: (cosy — 3 cosagcosag), (14)
where y is the angle between the dipoles and a4 and ap are the angles each dipole makes with
the line joining atoms A and B.

Like van der Waals terms, electrostatic terms are typically computed for nonbonded atoms
in a 1,4 relationship or further apart. Like van der Waals interactions, these are also long range
interactions and dominate the computation time. While the number of bonding interactions
grows linearly with molecule size, the number of nonbonded interactions grows quadratically with
molecule size. The computation time can be reduced by cutting off the interactions after a certain
distance. The van der Waals terms die off relatively quickly (o< R7®) and can be cut off around 10
A. The electrostatic terms die off slower (< R™1, although sometimes faster in practice), and are
much harder to treat with cutoffs. Economical computation of long-range terms is a challenging
research area where recent progress has been made.

Cross Terms

Cross terms are required to account for some interactions affecting others. For example, a strongly
bent HyO molecule brings the two H atoms closer together than they would like; this strain can
be partially alleviated by the O—H bonds stretching a little longer than normal. Hence, the bend
can affect the stretch. This can be modeled by cross terms such as

Exte/bond = kABchBC _ 96430) [(RAB _ RS‘B) + (RBC _ R(J;%C)} (15)

Other cross terms might include stretch-stretch, bend-bend, stretch-torsion, bend-torsion, etc.
Force field models vary in what types of cross terms they use.

Parameterizing from Experiment

It is clear that molecular mechanics requires many parameters, e.g., R{E, kAB B¢ ABC
VABCD “ete. The number of potential parameters is staggering — assuming there are 30 atoms
which form bonds with each other, there are 30*/2 torsional parameters for each VABCD term,
or 1 215 000 parameters for V; through V3! Only the 2466 “most useful” torsional parameters
are present in MM2, meaning that certain torsions cannot be described. Lack of parameters is
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a serious drawback of all force field methods. Some programs use a set of “generic” parameters
when the proper ones are unavailable — this can lead to inaccurate results!

Moreover, it can be difficult to extract the necessary parameters from experiment, especially
because experiment most directly probes molecules at their eqilibrium geometries. Ab initio elec-
tronic structure methods are being used more commonly to determine some of the parameters.
Unfortunately van der Waals interactions are hard to get reliably from any but the largest ab
initio computations, and are usually fit to experimental data for solids or liquids instead.

Obtaining parameters from experiment is not straightforward, because experiments measure
subtly different things. For example, different types of experiments can give many types of bond
lengths: rq, 74, 70, T2, T, Tey =+

Electron diffraction: Samples are hit with an electron beam in a vacuum, giving a diffraction
pattern which is Fourier tranformed to yield an intensity vs. distance radial distribution function.
Distances between pairs of atoms can be determined this way. The distance measured is r4, the
average distance between atoms. Older literature (around 1960 and before) used a quantity r,
which is about 0.002 A smaller than Tg.

X-ray and neutron diffraction: Measures the distance between the average atomic posi-
tions, r,, which is not the same as the average distance between atoms r,. The difference between
the two increases with increasing temperature.

He(l) 7, =174 +0.004 A
Ny(l) 7y =7s +0.005 A
R.T. r,=7,+0.007 A

Microwave spectroscopy: Can deduce moments of inertia from rotational levels (recall
rotational constant B includes 7). This only gives three pieces of data; need to use isotopic
substitution to get more information. Yields distances called r,.

High-resolution spectroscopy and ab initio theory: Can deduce the equilibrium distance
re, defined as the bottom of the potential well. Can also get ry, which is the average distance at
absolute zero. Usually rq is very slightly larger than r. because the potential is softer to the right.

Molecular mechanics methods typically work from 7y, but are often based on other types of
data. Hence, agreement to better than a few thousandths of an Angstrom is not possible. Likewise,
it should be remembered that ab initio computations which provide 7, will not exactly match x-ray
or electron diffraction data, etc.
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Table 1: Average errors in heat of formations (kcal/mol) by MM2*

Compound type  Avg error AH;

Hydrocarbons 0.42
Ethers and alcohols 0.50
Carbonyls 0.81
Aliphatic amines 0.46
Aromatic amines 2.90
Silanes 1.08

“Table 2.6 from Jensen’s Introduction to Computational Chemistry.

Heats of Formation

AHjy is the heat conent relative to the elements at standard state at 25° C (g). This is a useful
quantity for comparing the energies of two conformers of a molecule or two different molecules.

Bond energy schemes estimate the overall AH; by adding tabulated contributions from each
type of bond. This works acceptably well for strainless systems.

Molecular mechanics adds steric energy to the bond/structure increments to obtain better
estimates of AH;. Each bond is assigned a AH; value, and corrections are added for larger
groups (functional groups). The force field energy, which represents the steric energy, is added
to this. Additionally, to go from bare energies to enthalpies, one needs to add PV (=RT') and
(1/2)RT for each translational and rotational degree of freedom, for an overall enthalpy correction
of 4RT.

The bare molecular mechanics energy is not a meaningful quantity, because the zero of energy
of each individual term was chosen as zero for convenience. Therefore different molecules have
different zeros of energy until they are normalized by converting to AH.

In principle, other corrections should be added (but usually aren’t): population increments
(for low-lying conformers), torsional increments (for shallow wells), and corrections for low (< 7
kcal/mol) barriers other than methyl rotation (already included in group increment).

The performance of the MM2 force field for typical molecules is given in Table 1. Overall,
these results are rather good; however, unusual molecules can exhibit far larger errors.
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Different Force Field Methods

There are many different force field methods. Some of these contain high order terms (e.g., quartic
terms in stretching potentials) and several types of cross terms. These “Class I force fields have

higher accuracy and are generally applied to small/medium sized molecules. Examples include
Allinger’s MM1-4, EFF, and CFF.

For very large molecules (e.g., proteins), it is not possible to afford Class I level computations.
The force field methods can be made cheaper by using only quadratic Taylor expansions and
neglecting cross terms. This leads to “Class I1” force field methods such as AMBER, CHARMM,
GROMOS, etc. These force fields are made even cheaper by considering CHy units as a single
“CH4 atom.”

Hybrid Force Field/Electronic Structure Methods

These methods, such as Morokuma’s ONIOM method, treat “uninteresting” parts of the molecule
by force field methods and “interesting” parts by high-accuracy electronic structure methods.
This approach is useful for systems where part of the molecule is needed at high accuracy or for
which no force field parameters exist (e.g., metal centers in metalloenzymes). The challenge of
these methods is meshing the force field description with the electronic structure description. Such
methods are also called “quantum mechanics/molecular mechanics” (or QM/MM) methods.
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