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Potential Energy Surfaces

A potential energy surface is a mathematical function that

gives the energy of a molecule as a function of its geometry.

• Molecular Mechanics provides this energy as a function

of stretches, bends, torsions, etc. This is an approximate

model that breaks down in some situations (e.g., breaking

bonds). Only works when parameters are available.

• Quantum Mechanics provides an energy function which

can be exact in principle and works for any molecule. In

practice, approximate quantum methods are used due to

computational expense.



The Molecular Hamiltonian
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in atomic units, where i, j refer to electrons and A,B refer to

nuclei.

The Hamiltonian may be written more compactly as

Ĥ = T̂N(R) + T̂e(r) + V̂eN(r,R) + V̂NN(R) + V̂ee(r), (2)

where R is the set of nuclear coordinates and r is the set of

electronic coordinates.



Separability

Some parts of the Hamiltonian depend on nuclear coordinates

R, and others depend on electronic coordinates r. Any time

the Hamiltonian is separable like

Ĥ(q1, q2) = Ĥ1(q1) + Ĥ2(q2), (3)

then the eigenfunctions are just

Ψ(q1, q2) = Ψ1(q1)Ψ2(q2) (4)

and the eigenvalues are just E = E1+E2, where Ĥ1(q1)Ψ1(q1) =

E1Ψ1(q1) and Ĥ2(q2)Ψ2(q2) = E2Ψ2(q2). Unfortunately, the

electron-nuclear potential energy V̂eN(r,R) = −
∑
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prevents our molecular Hamiltonian from being separable.



The Born-Oppenheimer Approximation

Try to separate the electronic and nuclear degrees of freedom

even though they are coupled by the electron-nuclear potential

energy V̂eN(r,R). We can do this because the electrons are

much lighter than the nuclei, and so with respect to the

electrons, the nuclei are almost stationary. Thus we

1. Fix the nuclei at some chosen configuration Ra

2. Solve for the motion of the electrons for this nuclear

configuration, giving an electronic energy Ee(Ra) and

wavefunction Ψ(r;Ra)

3. Repeat for other nuclear configurations Rb of interest,

building up a Potential Energy Surface Ee(R).



Some Mathematical Details

Initially, T̂N(R) can be neglected since T̂N is smaller than T̂e by

a factor of MA/µe, where µe is the reduced mass of an electron.

Thus for a fixed nuclear configuration, we have

Ĥel = T̂e(r) + V̂eN(r;R) + V̂NN(R) + V̂ee(r) (5)

such that

Ĥe(r;R)Ψ(r;R) = Ee(R)Ψ(r;R) (6)

This is the “clamped-nuclei” Schrödinger equation. Note

V̂NN(R) is just a constant for any particular R.



The Total Wavefunction

An exact solution to the full Schrödinger equation can be

obtained by using an (infinite) expansion of the form

Ψ(r,R) =
∑

k

Ψk(r;R)χk(R), (7)

although usually only one or two terms are necessary for a

particular state. Inserting this expansion into the original

Schrödinger equation eventually yields:
[

T̂N + T̂ ′
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where
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Ukk′(R) = 〈Ψk(r;R)|Ĥe|Ψk′(r;R)〉. (12)



The Nuclear Wavefunction

Fortunately, the previous expressions involve terms which

are usually small, and assuming the wavefunction is real, we

normally obtain the following equation for the motion of the

nuclei on a given Born-Oppenheimer potential energy surface:
[

T̂N + T ′′
kk + Ukk

]

χk(R) = Eχk(R) (13)

Thus, when the off-diagonal couplings can be ignored, the nuclei

move in a potential field set up by the electrons. The potential

energy at each point is given primarily by Ukk (the expectation

value of the electronic energy, just Ee(R) previously), with

a small correction factor T ′′
kk, called the Born-Oppenheimer

Diagonal Correction (BODC).



The Born-Oppenheimer Diagonal Correction

EBODC = 〈Ψ(r;R)|T̂n|Ψ(r;R)〉, (14)

Also called the adiabatic correction. First systematic study

at the Hartree-Fock level by Handy, Yamaguchi, and Schaefer

(1986). First systematic study at correlated levels of theory by

Valeev and Sherrill (2003).



Table 1: Adiabatic correction to the barrier to linearity of water

in the ground state (in cm−1)a

Basis Method C2v D∞h ∆Eb
e

cc-pVDZ RHF 600.28 585.20 -15.08

cc-pVDZ CISD 615.03 599.15 -15.88

cc-pVDZ CISDT 616.82 600.62 -16.20

cc-pVTZ RHF 596.53 581.43 -15.10

cc-pVTZ CISD 611.89 596.73 -15.16

cc-pVQZ RHF 595.57 580.72 -14.85

aData from Valeev and Sherrill, 2003.

bThe difference between the adiabatic correction

for the C2v and D∞h structures.



Table 2: Adiabatic corrections to bond length and harmonic

frequencies of BH, CH+, and NHa

BH CH+ NH

∆re (Å) 0.00066 0.00063 0.00027

∆ωe (cm−1) -2.25 -2.81 -1.38

aData from Temelso, Valeev, and Sherrill, 2004.



Coordinates for Potential Energy Surfaces

In the absence of fields, a molecule’s potential energy doesn’t

change if it is translated or rotated in space. Thus the potential

energy only depends on a molecule’s internal coordinates. There

are 3N total coordinates for a molecule (x, y, z for each atom),

minus three translations and three rotations which don’t

matter (only two rotations for linear molecules). The internal

coordinates may be represented by simple stretch, bend,

torsion coordinates, or symmetry-adapted linear combinations,

or redundant coordinates, or normal modes coordinates, etc.



Characterizing Potential Energy Surfaces

The most interesting points on PES’s are the stationary points,

where the gradients with respect to all internal coordinates are

zero.

1. Minima: correspond to stable or quasi-stable species; i.e.,

reactants, products, intermediates.

2. Transition states: saddle points which are minima in all

dimensions but one; a maximum in that dimension.

3. Higher-order saddle points: a minimum in all dimensions

but n, where n > 1; maximum in the other n dimensions.



Figure 1: Example PES from Steinfeld, Francisco, and Hase



Figure 2: H2 + H → H + H2



Hessian Index

The Hessian index is the number of negative eigenvalues of the

force constant matrix. For a stationary point, this corresponds

to the number of internal degrees of freedom along which that

point is a potential energy maximum. The Hessian index is 0

for minima, 1 for transition states, > 1 for higher-order saddle

points. The Hessian index also corresponds to the number of

imaginary vibrational frequencies.

A geometry optimization, when run to completion, will provide

a stationary point geometry. Typically, this is a potential

energy minimum. However, the optimization might get stuck

on a saddle point. A vibrational analysis can verify the nature

of the stationary point via the Hessian index.


