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1 General Expressions for CI Gradients

A configuration interaction (CI) wavefunction |Ψ〉 is expressed as a linear combination of N -
electron basis functions (typically Slater determinants or spin-adapted configuration state func-
tions):

|Ψ〉 =
∑

I

cI |ΦI〉. (1)

The energy is an upper bound to the true nonrelativistic energy, according to the variational
principle, and is given by

E = 〈Ψ|Ĥ|Ψ〉

=
∑

IJ

c∗IcJ〈ΦI |Ĥ|ΦJ〉

=
∑

IJ

c∗IcJHIJ . (2)

The configuration interaction method is discussed in great detail in several reviews1,2, 3 and in
lecture notes.4,5 In these notes we will consider analytic gradients of the CI energy.

The first derivative of the energy with respect to some parameter x may be written

∂E

∂x
=

∑

IJ

(

∂c∗I
∂x

cJHIJ + c∗I
∂cJ

∂x
HIJ + c∗IcJ

∂HIJ

∂x

)

. (3)

Using the fact that the converged CI vectors c satisfy the Schrödinger equation in the selected
N -electron space, Hc = Ec, or

∑

J

HIJcJ = EcI , (4)
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and using the properties of Hermitian operators, we obtain

∂E

∂x
= E

∑

I

(

∂c∗I
∂x

cI + c∗I
∂cI

∂x

)

+
∑

IJ

c∗IcJ

∂HIJ

∂x
. (5)

This expression can be simplified further because the CI vector is normalized,

∑

I

c∗IcI = 1. (6)

Differentiating the normalization condition with respect to x yields the useful result

∑

I

(

∂c∗I
∂x

cI + c∗I
∂cI

∂x

)

= 0. (7)

Substituting this into the most recent expression for ∂E/∂x yields simply

∂E

∂x
=
∑

IJ

c∗IcJ

∂HIJ

∂x
. (8)

Hence, the fact that the CI coefficients cI are determined variationally means that there is no
need to consider their derivatives when evaluating the gradient of the CI energy, and the CI
wavefunction obeys the Hellmann-Feynman theorem with respect to the expansion coefficients cI .
Furthermore, these considerations hold regardless of the particular choice of molecular orbitals.

Now it remains to consider the form of the terms ∂HIJ/∂x. Using the one- and two-particle
coupling coefficients from configuration interaction theory,

HIJ = 〈ΦI |Ĥ|ΦJ〉

=
∑

pq

γIJ
pq hpq +

∑

pqrs

ΓIJ
pqrs(pq|rs). (9)

Note: some authors leave a factor of 1
2

before the two-particle coupling coefficient. We have

followed a majority of publications by absorbing the 1
2

into Γ. The detci program leaves the 1
2

factor pulled out. Thus replace every Γ in these notes with 1
2
Γ to compare to detci. Our notation

here is consistent with Yamaguchi et al.6 Recall that γIJ
pq and ΓIJ

pqrs are given by7,8, 9, 3

γIJ
pq = 〈ΦI |Êpq|ΦJ〉, (10)

ΓIJ
pqrs =

1

2
〈ΦI |ÊpqÊrs − δqrÊps|ΦJ〉, (11)



and have the properties
γIJ

pq = (γJI
qp )∗ (12)

ΓIJ
pqrs = ΓIJ

rspq = (ΓJI
srqp)

∗ = (ΓJI
qpsr)

∗. (13)

Armed with this more detailed notation, we can proceed with the task of writing down an
explicit expression for the CI gradients. Equation (8) may be expanded as

∂E

∂x
=

∑

IJ

c∗IcJ

(

∑

pq

γIJ
pq

∂hpq

∂x
+
∑

pqrs

ΓIJ
pqrs

∂(pq|rs)

∂x

)

. (14)

Derivatives of the coupling coefficients are generally zero, so we have omitted such terms. Given
this, we can simplify the expression by summing over I and J to yield the standard CI one- and
two-particle density matrices,

γpq =
∑

IJ

c∗IcJγIJ
pq (15)

Γpqrs =
∑

IJ

c∗IcJΓIJ
pqrs. (16)

Hence the energy gradient can be written more compactly as

∂E

∂x
=

∑

pq

γpq

∂hpq

∂x
+
∑

pqrs

Γpqrs

∂(pq|rs)

∂x
. (17)

1.1 Density Contributions from Inactive Core Orbitals

It is possible to reduce the storage requirements of the one- and two-particle density matrices in
the case of inactive core or inactive virtual orbitals. By inactive core, we mean that the orbital is
required to remain doubly occupied in all N -electron functions which span the CI space. This is
called the “frozen core” approximation in the context of CI wavefunctions, but our discussion here
will also pertain to multiconfigurational self-consistent-field (MCSCF) wavefunctions, in which the
orbitals are constrained to remain doubly occupied but are not “frozen” since they are optimized
during the course of the MCSCF procedure. Likewise, inactive virtuals are not allowed to be
occupied in the CI wavefunction, but they too are optimized in an MCSCF procedure.

Any element of either density matrix with an index corresponding to an inactive virtual orbital
must be zero. Hence, the indices of the density matrices can be restricted to run over only
populated (i.e., excluding inactive virtual) orbitals. Furthermore, the density matrices become



sparse when at least one index belongs to the inactive core. Let us use t, u, v, . . . to denote active
orbitals (i.e., all orbitals but the inactive core and inactive virtuals), and i′, j′, k′, . . . to denote
inactive core orbitals. Then the one-particle density matrix obeys (assuming real orbitals)

γi′j′ = 2δi′j′ , (18)

γi′t = 0, (19)

and the two-particle density matrix elements are zero if one or more indices belong to the inactive
core space, except for the following elements:

Γi′j′k′l′ = 2δi′j′δk′l′ − δj′k′δi′l′ (20)

Γtui′i′ = Γi′i′tu = γtu (21)

Γti′i′u = Γi′tui′ = −
1

2
γtu. (22)

2 Gradients with respect to Nuclear Coordinates

To continue evaluating this expression, we need to know how the molecular orbitals change for
a given perturbation δx of coordinate x. Here we will focus on Cartesian coordinates of the
atoms, as required in geometry optimization. We expect a change not only in the coefficients
that describe the molecular orbital in terms of atomic orbitals, but also in the underlying atomic
orbitals themselves. To first order,6

φp → φp + δx

(

∑

q

Ũx
qpφq + φx

p

)

+ O(δx2), (23)

where Ũx
qp are the standard coupled-perturbed coefficients and where φx

p is the molecular orbital
evaluated with differentiated atomic orbitals

φx
p =

∑

µ

Cµp

(

∂χµ

∂x

)

. (24)

Given this, it is straightforward to show that the derivatives of the one- and two-electron integrals
are6

∂hpq

∂x
=

∑

r

hrqŨ
x
rp +

∑

r

hprŨ
x
rq +

∑

µν

CµpCνq

∂hµν

∂x
(25)



∂(pq|rs)

∂x
=

∑

t

[

Ũx
tp(tq|rs) + Ũx

tq(pt|rs) + Ũx
tr(pq|ts) + Ũx

ts(pq|rt)
]

+
∑

µνρσ

CµpCνqCρrCσs

∂(µν|ρσ)

∂x
. (26)

It is convenient to distinguish the parts of these expressions due to mixing of molecular orbitals
from those due to the changes in atomic orbitals. Following Kobayashi et al.,10 we will denote the
purely AO parts (assuming real orbitals) as

hx
pq =

∑

µν

CµpCνq

∂hµν

∂x
(27)

(pq|rs)x =
∑

µνρσ

CµpCνqCρrCσs

∂(µν|ρσ)

∂x
. (28)

These quantities are called the skeleton (or core) derivative integrals and denoted hx
pq and (pq|rs)x,

respectively, by Yamaguchi et al .6 We will reserve these symbols (without overbars on x) as a
compact notation for the full derivatives ∂hpq/∂x and ∂(pq|rs)/∂x, respectively.

Hence the analytic energy gradient for a CI wavefunction separates into two types of terms.
The skeleton terms reflect the changes in the atomic orbitals, and they have the same form as the
full energy expression, except that derivative integrals replace the regular integrals. The remaining
terms reflect changes in the molecular orbitals and involve the orbital response coefficients Ũx

pq,
which could be obtained by the coupled-perturbed Hartree-Fock equations if the molecular orbitals
were Hartree-Fock orbitals. We may write the gradient as

∂E

∂x
=

∑

pq

γpqh
x
pq +

∑

pqrs

Γpqrs(pq|rs)
x (29)

+
∑

pq

γpq

∑

r

hrqŨ
x
rp +

∑

pq

γpq

∑

r

hprŨ
x
rq

+
∑

pqrs

Γpqrs

∑

t

[

Ũx
tp(tq|rs) + Ũx

tq(pt|rs) + Ũx
tr(pq|ts) + Ũx

ts(pq|rt)
]

.

From (13), it is clear that Γpqrs = Γrspq. Furthermore, for real wavefunctions, γpq = γqp, and
Γpqrs = Γrspq = Γsrqp = Γqpsr. This allows us to simplify the gradient expression to

∂E

∂x
=

∑

pq

γpqh
x
pq +

∑

pqrs

Γpqrs(pq|rs)
x (30)

+ 2
∑

pq

γpq

∑

r

hrqŨ
x
rp + 2

∑

pqrs

(Γpqrs + Γqprs)
∑

t

(tq|rs)Ũx
tp.



We may write the energy gradient even more compactly as11

∂E

∂x
=

∑

pq

γpqh
x
pq +

∑

pqrs

Γpqrs(pq|rs)
x + 2

∑

pq

Ũx
pqXpq, (31)

by defining the Lagrangian X as

Xpq =
∑

r

hprγqr +
∑

rst

(pr|st) (Γqrst + Γrqst) . (32)

Note that many other authors typically write the Lagrangian as

Xpq =
∑

r

hprγqr + 2
∑

rst

(pr|st)Γ̃qrst. (33)

This expression is equivalent to the present one (32) if Γ̃ is symmetrized to exhibit the full eight-fold
permutational symmetry of the integrals (i.e., so that Γ̃qrst = Γ̃rqst). This can be accomplished by
literally setting Γ̃qrst = 1

2
(Γqrst + Γrqst). For the purpose of contracting Γ against the two-electron

integrals, no error is introduced by symmetrizing Γ; individual terms will become different, but
the overall sum is unchanged because of the symmetry of the two-electron integrals. However,
other uses of Γ may not allow this symmetrization.

2.1 Independent Pairs and Gradients of MCSCF Wave Functions

MCSCF wave functions represent a special case for CI gradients, because the orbitals are, by
definition, those that minimize the CI energy. Here we assume that the orbitals are fully optimized
(i.e., none are fixed in their SCF form — the orbitals may be “restricted” in their occupations,
but they are not “frozen” and prevented from being optimized).

If the orbitals are optimized, then, to first order, no rotation between any pair of orbitals will
change the CI energy. In a CASSCF or RASSCF, the energy is already invariant to rotations of
orbitals within the same RAS/CAS space, and the orbital optimization ensures that the energy is
also stationary with respect to rotations between orbitals belonging to different orbital subspaces.
If the energy is invariant (to first order) to rotations between orbitals p and q, then the Lagrangian
is symmetric with respect to this pair: Xpq = Xqp. (In fact, one can also view the MCSCF
procedure as the process of making the Lagrangian symmetric.) The symmetric nature of the
MCSCF Lagrangian has a very important consequence when coupled with one other fact.

The orthonormality constraint on the molecular orbitals,

〈φp|φq〉 = δpq, (34)



leads to the following first-order condition on the coupled-perturbed Hartree-Fock coefficients:

Ũx
pq + Ũx

qp + Sx
pq = 0. (35)

With these two facts ready, we can tremendously simplify the Lagrangian contribution to the
MCSCF gradient:

2
∑

pq

XpqŨ
x
pq =

∑

pq

Xpq

(

Ũx
pq − Ũx

qp

)

+
∑

pq

Xpq

(

Ũx
pq + Ũx

qp

)

(36)

=
∑

pq

Ũx
pq (Xpq − Xqp) −

∑

pq

XpqS
x
pq (37)

= −
∑

pq

XpqS
x
pq. (38)

This is a remarkable result — there is no need to solve the coupled-perturbed Hartree-Fock equa-
tions (explicitly or implicitly) to obtain the Ũx

pq factors, because they disappear! Note once again
that this happens because the Lagrangian is symmetric for MCSCF. The Lagrangian will also be
symmetric for full CI (because the full CI energy is invariant to any orbital rotations), but only if
no orbitals are frozen.

From the above equations, we can see that we need to evaluate the effect of orbital rotation,
through the Lagrangian and the coupled-perturbed Hartree-Fock coefficients, only for pairs of
orbitals p and q for which Xpq 6= Xqp. Such pairs of orbitals are called the independent pairs. In
practice, one would use the Z-vector trick to avoid explicit computation of the CPHF coefficients.

2.2 Efficient Computation of Energy Gradients

2.2.1 Backtransformation of the Density Matrices

As any CI program must compute (either explicitly or implicitly) the one- and two-electron cou-
pling coefficients (γIJ

pq and ΓIJ
pqrs), it is straightforward to obtain the one- and two-particle density

matrices γpq and Γpqrs via (15) and (16). However, the derivative integrals hx
pq and (pq|rs)x are

originally computed in the atomic orbital (AO) basis. So, one must either transform the derivative
integrals into the MO basis, or backtransform the density matrices into the AO basis. The latter
alternative is much more efficient, since the number of derivative integrals is greater than the
number of density matrix elements by a factor of 3NA, where NA is the number of atoms. Note
that the backtransformation of the density matrices is not really a true backwards transformation,



in the sense that, if applied to the MO integrals, it would not yield the AO integrals back again. It
is clear from (31) that one needs to use transposed MO coefficient matrices, and not the inverses
of these matrices.

2.2.2 Z-Vector Treatment of the Orbital Response Contributions

The term 2
∑

pq Ũx
pqXpq is most efficiently evaluated using the Z-vector approach of Handy and

Schaefer12 to avoid having to explicitly solve for the coupled-perturbed coefficients Ũx
pq for every

perturbation x. Instead, a set of perturbation-independent equations are solved, and then very
inexpensive dot products are taken to compute the contributions of the individual perturbations.

First, let us re-write the expression 2
∑

pq Ũx
pqXpq so that we can work only in terms of the Ũx

pq

that are really necessary. We can break down this term as:

2
∑

pq

Ũx
pqXpq = 2

∑

p>q

Ũx
pqXpq + 2

∑

p

Ũx
pqXpp + 2

∑

p<q

Ũx
pq. (39)

Using the orthonormality constraint of the orbitals (35), Ũx
pp = −1

2
Sx

pp, and Ũx
qp = −Ũx

pq − Sx
pq.

Thus we arrive at

2
∑

pq

Ũx
pqXpq = 2

∑

p>q

Ũx
pq(Xpq − Xqp) −

∑

p

Sx
ppXpp − 2

∑

p>q

Sx
pqXqp. (40)

The last two terms may be handled in various ways, but since we are contracting elements of the
Lagrangian with a symmetric matrix (Sx), it may be advantageous to rearrange these terms so
that the contraction involves a symmetric matrix X̃ obtained from the relevant components of X.
In particular, the contribution of the last two terms can be written as

−
∑

pq

Sx
pqX̃pq, where X̃pq =

{

Xpq p ≤ q
Xqp p > q

(41)

This allows subsequent code to take advantage of the symmetric nature of the derivative overlap
matrices and employ only the upper triangle or only the lower triangle, if desired.

Our rearrangement of the Lagrangian contribution may thus be rewritten as

2
∑

pq

Ũx
pqXpq = 2

CI−IP
∑

p>q

Ũx
pq∆Xpq −

∑

pq

Sx
pqX̃pq, (42)

where the sum in the first term is only over the CI “independent pairs,” i.e., those pairs of orbital
rotations for which the CI energy changes. If an orbital rotation between orbitals p and q does not



change the CI energy, then the Lagrangian X will be symmetric with respect to that rotation (i.e.,
Xpq = Xqp), making ∆Xpq = 0, zeroing out that contribution. Such “redundant” pairs are not
necessary. Only those pairs of orbitals for which a rotation changes the CI energy are required. To
take the simplest example of a CISD out of a closed-shell RHF reference, with no orbitals frozen,
the CI independent pairs are only those mixing one occupied and one unoccupied orbital. The
CISD energy is invariant to mixings among occupied orbitals or among virtual orbitals, making
such rotations redundant. In a RAS CI, only rotations which mix an orbital in one RAS space
with an orbital in another RAS space will change the CI energy. For any kind of CI, rotations
mixing frozen and unfrozen orbitals will also change the CI energy, and these need to be included
in the list of CI independent pairs.

Once the list of independent pairs is created, it remains to evaluate 2
∑CI−IP

p>q Ũx
pq∆Xpq. In

principle, one could explicitly solve the CPHF equations to obtain Ũx
pq and then contract against

differences in Lagrangian elements. However, it is possible for CI first derivatives to bypass the
explicit solution of Ũx

pq. The CPHF equations have the form

(Ξ − A)Ũx = Bx
0 , (43)

where Ũx is the set of CPHF coefficients Ũx
ij for each perturbation x. We will treat Ũx and Bx

0 as
vectors (with compound index pq), and matrices Ξ and A as a matrix with compound indices pq
and rs. Ξ is a diagonal matrix of SCF orbital eigenvalue differences,

Ξpq,rs = δprδqs(ǫq − ǫp). (44)

For a closed-shell SCF reference function, the elements of matrix A are

Apq,rs = 4(pq|rs) − (pr|qs) − (ps|qr). (45)

The (perturbation-dependent) elements of Bx
0 are

Bx
0,pq = fx

pq − Sx
pqǫq −

d.o.
∑

ij

Sx
ij [2(pq|ij) − (pi|qj)] . (46)

The matrix elements of the skeleton (core) Fock matrix are

fx
pq = hx

pq +
d.o.
∑

k

[

2(pq|kk)x − (pk|qk)x
]

. (47)

It will be convenient below to write the CPHF equations even more concisely, as

ÃŨx = Bx
0 , (48)



where
Ã = Ξ − A. (49)

The elements of Ux are not well-defined for rotations which do not change the Hartree-Fock
reference energy (“SCF redundant pairs”). Hence, the CPHF equations are solved first for the
SCF independent pairs. Let us consider the case of a closed-shell, RHF reference, where the
independent pairs will be all pairs (a, i), with a a virtual orbital and i an occupied orbital. We
solve for the CPHF coefficients Ux

ai of the SCF independent pairs a, i using the CPHF equation
48, where the relevant parts of Ã and Bx

0 are

Ãai,bj = δabδij(ǫi − ǫa) − [4(ai|bj) − (ab|ij) − (aj|ib)] , (50)

Bx
0,ai = fx

ai − Sx
aiǫi −

d.o.
∑

jk

Sx
jk [2(ai|jk) − (aj|ik)] . (51)

Subsequently, the elements for the SCF-redundant pairs may be determined using

Ũx
pq =

1

(ǫq − ǫp)

(

vir
∑

a

d.o.
∑

i

Apq,aiŨ
x
ai + Bx

0,pq

)

. (52)

As pointed out by Yamaguchi et al.,6 the equation above is defined using the diagonal nature of
the Fock matrix, making it inapplicable in cases of orbital degeneracies. In practice, we will not
need to use this equation except for pairs that are CI independent pairs, and by definition this
means that the two orbitals p and q will not be degenerate (degenerate orbitals should always be
placed in the same orbital subspace). Now that the relevant CPHF equations have been given, we
will proceed to show how to avoid the explicit use of Ũx.

The gradient contribution from the non-symmetric part of the Lagrangian may be broken up
into SCF-independent and SCF-redundant pairs:

2
CI−IP
∑

p>q

Ũx
pq∆Xpq = 2

CI−IP

SCF−IP
∑

p>q

Ũx
pq∆Xpq + 2

CI−IP

SCF−redun
∑

p>q

Ũx
pq∆Xpq (53)

= 2
vir
∑

a

d.o.
∑

i

Ũx
ai∆Xai + 2

CI−IP
∑

j>k

Ũx
jk∆Xjk + 2

CI−IP
∑

b>c

Ũx
bc∆Xbc, (54)

where we have assumed here that all SCF independent pairs (a, i) are also CI independent pairs.
This is not necessarily true (e.g., second-order CI may have a RAS II space mixing occupieds and
virtuals), but it is not problematic to include these pairs in the CI independent pair list because



the contributions will be zero anyway because ∆Xai will be zero for these terms. However, it is
important to include all these pairs because of a combination of terms coming up momentarily;
the code which makes a list of CI independent pairs needs to be aware of this.

Using equation (52), this can be expanded as:

2
CI−IP
∑

p>q

Ũx
pq∆Xpq = 2

vir
∑

a

d.o.
∑

i

Ũx
ai∆Xai (55)

+ 2
CI−IP
∑

j>k

∆Xjk

ǫk − ǫj

(

vir
∑

a

d.o.
∑

i

Ajk,aiŨ
x
ai + Bx

0,jk

)

+ 2
CI−IP
∑

b>c

∆Xbc

ǫc − ǫb

(

vir
∑

a

d.o.
∑

i

Abc,aiŨ
x
ai + Bx

0,bc

)

= 2
vir
∑

a

d.o.
∑

i

Ũx
ai∆X ′

ai (56)

+ 2
CI−IP
∑

j>k

ZjkB
x
0,jk + 2

CI−IP
∑

b>c

ZbcB
x
0,bc,

where

∆X ′

ai = ∆Xai +
CI−IP
∑

j>k

∆Xjk

ǫk − ǫj

Ajk,ai +
CI−IP
∑

b>c

∆Xbc

ǫc − ǫb

Abc,ai, (57)

Zjk =
∆Xjk

ǫk − ǫj

, (58)

Zbc =
∆Xbc

ǫc − ǫb

. (59)

We can rewrite the first term in equation (56) as a dot product between two vectors (where
the vectors run over all the SCF independent pairs a, i):

2∆X′T Ũx. (60)

Now let us rewrite the CPHF equations as

Ũx = Ã−1Bx
0 . (61)

With the CPHF coefficients in this form, equation (60) may be expressed as

2∆X̃T Ũx = 2∆X̃T Ã−1Bx
0 (62)

= 2ZTBx
0 ,



where
ZT = ∆X̃T Ã−1, (63)

or
ÃTZ = ∆X̃. (64)

Hence the explicit computation of CPHF coefficients Ũx
ai can be avoided by computing the perturbation-

independent Z vector instead. In the above equation, ∆X̃ and Z have lengths equal to the number
of SCF independent pairs a, i; A here is a square matrix.

Referring back to equation (56), the second and third terms are also, like our rearranged first
term, of the form ZTBx

0 . We can thus combine all the terms from equation (56) into the general
form

2
CI−IP
∑

p>q

Ũx
pq∆Xpq = 2

CI−IP
∑

p>q

ZpqB
x
0,pq, (65)

where

vir
∑

a

d.o.
∑

i

ÃT
bj,aiZai = ∆X̃bj, (66)

Zjk =
∆Xjk

ǫk − ǫj

, (67)

Zbc =
∆Xbc

ǫc − ǫb

. (68)

One way to evaluate this term is to solve for the Z vector and then contract it with derivative
Bx

0 matrices as they are computed. Another approach is to avoid explicit computation of Bx
0 , and

instead fold these contributions into the one- and two-particle density matrices and the Lagrangian
before they are backtransformed for contraction against derivative one and two-electron integrals
and overlap integrals. If one pursues the first approach, the relevant equations are already pre-
sented above. To pursue the second approach, let us expand equation (65) using the definition
(46) for Bx

0 :

2
CI−IP
∑

p>q

ZpqB
x
0,pq = 2

CI−IP
∑

p>q

Zpq

(

hx
pq +

d.o.
∑

k

[

2(pq|kk)x − (pk|qk)x
]

(69)

−Sx
pqǫq −

d.o.
∑

ij

Sx
ij [2(pq|ij) − (pi|qj)]



 .



Collecting the terms that multiply hx
pq, (pq|rs)x, and Sx

pq yields the following modified one-particle
density matrix, two-particle density matrix, and Lagrangian:

γ′

pq = γpq + 2Zpqδp>qδ(pq)∈CI−IP, (70)

Γ′

pqkk = Γpqkk + 4Zpqδp>qδ(pq)∈CI−IP, (71)

Γ′

pkqk = Γpkqk − 2Zpqδp>qδ(pq)∈CI−IP, (72)

X̃ ′

pq = X̃pq + 2Zpqǫqδp>qδ(pq)∈CI−IP + δp∈d.o.δq∈d.o.

CI−IP
∑

r>s

2Zrs [2(pq|rs) − (pr|qs)] . (73)

With these modifications, the total energy gradient may be written in a form similar to equation
(31) as

∂E

∂x
=
∑

pq

γ′

pqh
x
pq +

∑

pqrs

Γ′

pqrs(pq|rs)
x −

∑

pq

X̃ ′

pqS
x
pq. (74)
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