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1 General Information and Outline of the Hartree—Fock
Procedure

Goals: Write a computer program to perform a closed-shell restricted Hartree-Fock computation,
given nuclear repulsion energy and one- and two-electron integrals. These notes describe three
strategies for accomplishing this goal, of which you should choose one: (1) reading the required
data from a plain text file, for the specific case of STO-3G H,O at a specific geometry; or (2)
obtaining the required data directly from the Psi4 program package using Psi4’s Python front-end
and the Psi4’s available Python function library.

An advantage of strategy (1), the plain text file for STO-3G HO, is that you are free to
use any computer programming language that you wish (or Matlab, Mathematica, etc.). The
disadvantages are that your program will be limited to working only for this one test case (unless
you can independently generate the required integrals), and that you will have to create/find all
required subroutines (e.g., matrix diagonalization, matrix multiplication, etc.)

An advantage of strategy (2) is that it will work on general molecules, and you can leverage
existing subroutines provided by Psi4. Documentation of all functions required to accomplish
the project using Python is provided below. It is also possible to use the Python API, and/or
the NumPy interface of Psi4 to write this code, but these notes assume you are using the binary
(“Psithon”) interface to Psi4. These notes should work for any recent version of Psi4, e.g., version
1.1 or newer (including 1.4).

Additional Information: See chapter 3 (sections 3.4.4 - 3.4.6) of Modern Quantum Chem-
istry, 1st Ed., Revised, A. Szabo and N. S. Ostlund (McGraw-Hill, New York, 1989).

Procedure: Here we will briefly outline the primary computational steps. In subsequent
sections, we will discuss strategies for implementing these steps.

1. Get the nuclear repulsion energy (Enuc).
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2. Use PsI to compute one-electron integrals

(a) Compute the overlap integrals (S).

(b) Compute the kinetic energy integrals (T).
(c) Compute the potential energy integrals (V).
(d) Form the core Hamiltonian (H), via H,, = T, + V..
3. Construct the orthogonalizing matrix S~/2
(a) Diagonalize the S matrix,
UTSU = A. (1)

(b) Form the S~/2 matrix,

ST12 = UA~V2UT, (2)

4. Construct an initial (guess) density matrix

(a) Form the “core” Fock matrix in the orthogonalized basis via

F = (S7Y2)THS /2, (3)

(b) Diagonalize the initial Fock matrix using a standard eigenvalue routine such as the

DSYEV routine in the LAPACK library.
CHFIC) = e. (4)

Note: Two steps below this, you will be forming the density matrix using the columns
of C' that correspond to occupied orbitals. You need to know which columns of C'
correspond to occupied orbitals and which ones correspond to unoccupied orbitals.
Many standard diagonalizers will sort the eigenvalues and eigenvectors for you, and if
they sort them in increasing order of the eigenvalues, then you can just take the first
N/2 columns of C' when forming the D matrix, where N is the number of electrons (and
hence N/2 is the number of doubly-occupied orbitals). But if your matrix diagonalizer
does not sort the eigenvalues/eigenvectors, you will have to sort them yourself or else
somehow make sure you are using the correct columns of C' when forming D below.

Form the initial SCF eigenvector matrix in the original basis

Co = S~12Cy. (5)
Form the initial density matrix, D
N/2
Dw/ = Z Cpicuia (6)

where N is the number of electrons (and hence N/2 is the number of doubly-occupied
orbitals).



5. Perform the SCF iterations

(a)

(b)

()

(d)

Form the new Fock matrix, F, from the density matrix and the two-electron integrals

AO

Frw = Hu + - Dy 2lr|po]) — uplvol}. (7)
po
Calculate the electronic energy
AO
E =3 Du (Hu+ Fu) + Bnye. (8)
nuv

Transform the Fock matrix to the orthonormal basis
F' = (S7V%)Tps-1/2, (9)
Diagonalize the Fock matrix
CTF'C" =e. (10)

As discussed above, you probably want to ensure the eigenvectors (columns of C') are
sorted so that the corresponding eigenvalues are in increasing order.

Construct the new SCF eigenvector matrix

C =SV (11)
Form the new density matrix
N/2
D;u/ = Z C,u,iOVi? (12>

where N/2 is the number of doubly-occupied orbitals.

Test for convergence of the energy.
AE =E"— E"' < §g (13)
Optionally, also test convergence of the density and/or Fock matrix. One simple way

to do this is just to compute the RMS change in the density matrix:

1/2
< 5D (14)

AO

Drms = lz (D;Ly - DZV_l)Q

1%

This criterion is fine for small systems. For very large systems, it will become harder
for this criterion to be met for a fixed RMS cutoff value. An alternative criterion that



is sometimes used is the commutator of the density matrix and the Fock matrix, which
will go to zero at convergence.

AO

(D, Fl,., = Z SyoD oo For — FlupD o Sey (15)
po
I[D, Flllr < dp (16)

(i) If not converged, do another iteration.

2 Project writeup

Before discussing three different technical strategies for performing the project, if you are doing
this project as a class project, below are some suggestions for what to include in your project
write-up (if you are just doing this as part of a research experience there is probably no reason to
do a formal writeup).

1. Include a short introduction giving a brief re-cap of what Hartree-Fock is and how it works,
in your own words

2. Give an introduction to how you coded the program: what language (or program like Math-
ematica) did you use, why did you pick that language, what features of the language were
helpful, what things did the language not provide automatically that you had to code up
yourself, did you have to use any special tricks, etc.

3. Provide the actual source code of your Hartree-Fock program and any helper functions you
had to write

4. Provide at least one sample output from your program (including the corresponding input
file, if you are not using the HyO integrals file from Coding Strategy #1 below).

5. If you did not obtain the correct Hartree-Fock energy, explain what you think might have
gone wrong with your program.

3 Coding strategy #1: reading data from a text file for a
specific test case

The required data for STO-3G H5O at its equilibrium geometry is available on the Sherrill group
website at |http://vergil.chemistry.gatech.edu/h2oints.txt. The file should be self-explanatory.
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There are 7 orbitals for this system in the STO-3G basis. Note that the numbering of orbitals in
the two-electron integrals starts at 0. Feel free to reformat the file to suit your purposes.

Important note: The printout of the two-electron integrals only lists the permutationally unique
integrals. Recall that the two-electron integrals have 8-fold permutational symmetry when using
real orbitals:

[pqlrs| = lap|rs] = [palsr] = lap|sr] = [rs|pq] = [sr|pq] = [rs|qp] = [s7|qp]. (17)

The equations given above for the Fock matrix assume all possible permutations of integrals
are available. That means that in forming the Fock matrix you may find yourself needing integral
[21]34], and you need to realize that it doesn’t appear that way in the list, it appears as [43]21].
The integrals listed follow the canonical order that p > ¢, » > s, and with the indices on the left
being larger than those on the right (this last requirement can be stated more formally by saying
Psi4 requires that the “super-indices” pg and rs satisfy the requirement that pqg > rs, where
pq = (p(p+1)/2) + q, and analogously for rs, and with orbital numbering beginning with 0).

4 Coding strategy #2: Writing a general program in Python
using Psi4

Another option for getting the required integrals is to interface to a program like Psi4. This is
relatively easy to do using Psi4’s very user/programmer-friendly Python front-end, which allows
user input files to include not only molecule/computation information, but also any valid Python
code. This means that it is possible to write a Hartree-Fock program in Psi4 using only the Psi4
binary and a single user input file. Python is a high-level language (i.e., it is easy to accomplish
a lot in relatively few lines of code), it is widely used, and it is fairly easy to learn.

This approach will require you to install (or have access to) a binary of the Psi4 program.
If you do not already have login access to a machine with Psi4 on it, you can either download
and install a Psi4 binary (easiest), or download the Psi4 source and compile and install it. To
download and install a binary, see the

“Psi4 Downloads”.

If you create your program this way, once the Psi4 binary is available, you just need to create
your program in an input file according to the template provided in Figure [I] and execute it from
Psi4 like this: psi4 my-program.in.

Psi4 provides routines that make one- and two-electron integrals available in Python, and


http://www.psicode.org/downloads.html

Figure 1: Overall skeleton of a Psi4 program in an input file.

# Your program goes first, at the top of the file
def simple_scf(molecule):

# make sure the molecule object gets correctly populated with
# the current geometry
molecule.update_geometry ()

# your Python program goes here, takes a Psi4 molecule as input

# after your program, then specify a molecule using normal

# Psi4 input and run the SCF using your python SCF code and then also
# with the usual Psi4 SCF code, so that you can compare final energies.
# You should be able to pick any small molecule you like

# (although we will assume RHF so make it closed-shell).

molecule mol {
01

0

H11.0
H11.02 104.5
symmetry cl

}

set {
basis sto-3g

}

simple_scf (mol)
set scf_type direct
energy (’scf’)

a Matrix class that allows various operations like matrix multiplication, matrix diagonalization,
etc. It also has a Molecule class that allows one to grab useful information from a user-specified
molecule, like its overall charge, etc. All the functions necessary to write a Hartree-Fock program
should be given below. However, you can find a complete list of all Psi4 functions available from
Python in the [Linking C+4 and Python section of the [Psi4 Manual.


http://psicode.org/psi4manual/master/psi4api.html
http://psicode.org/psi4manual/master/index.html

Figure [2|illustrates how to use PSi4’s integral generation routines to form all the required one-
and two-electron integrals and make them accessible through Psi Matrix objects. Note: these
matrices are all stored in core RAM; because the two-electron integrals are an O(N?) quantity,
you should stick to small test cases with your program. The integrals will be generated for the
current default Molecule object; the skeleton program above will correctly specify a mol as the
default (and only) molecule object, so there is no ambiguity.

Figure 2: Using Psi4’s MintsHelper to generate integrals

# Integral Generation
win = Wavefunction.build(mol, get_global_option("basis"))
mints = MintsHelper (wfn.basisset())

S = mints.ao_overlap()
T = mints.ao_potential()
V = mints.ao_kinetic()

I = mints.ao_eri()

S, T, and V are all square matrices of size nbf x nbf, where nbf is the number of AO ba-
sis functions, which can be obtained by querrying the matrices about their number of rows (or
columns), like this: nbf = S.rows(0). The two-electron integrals are formally represented by a
4-dimensional tensor, but the Ps14 MintsHelper object packs them into a (2-dimensional) Matrix
for convenience. It accomplishes this by computing a “composite” row index pq = p * nbf + ¢,
where p and ¢ are individual orbital indices.

The Psi4 Matrix objects have various built-in capabilities. Some of them are as follows:

1. Create new Matrix X with nrows rows and ncols cols: X = Matrix(nrows, ncols)
2. Get the p, ¢ element of X: val = X.get(p,q)

3. Set the p, ¢ element of X to val: X.set(p,q,val)

4. Add J to F: F.add(J)

5. Subtract K from F': F.subtract (K)

6. Multiply X by 2: X.scale(2.0)

7. Copy X toY: Y = X.clone()

8. Matrix multiplication C' = fC+aAB (set § = 0 if the result of « AB is to overwrite C instead
of add to it): C.gemm(transa, transb, alpha, A, B, beta), where transa = True if we
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10.

11.

need to transpose matrix A (otherwise transa = False), and transb = True if we need
to transpose matrix B (otherwise transb = False). Note: The input matrices A and B
cannot also be used to store the result; that is, you can’t do something like A.gemm(transa,
transb, 1.0, A, B, 0) because you’d need to be writing into A at the same time you're
reading from A.

Diagonalization of a symmetric Matrix:

X.diagonalize(evecs, evals, DiagonalizeOrder.Ascending) will diagonalize symmet-
ric matrix X, placing the eigenvectors in matrix evecs (one eigenvector per column) and the
corresponding eigenvalues in evals, which is a Vector. Both evecs and evals should have
already been created by the user (e.g., evecs = Matrix(n,n) and evals = Vector(n)).
Note: this routine does not actually change the original matriz X to diagonal form; the
original matriz X is left untouched.

Raise a matrix to the p-th power: X.power(p, 0.0)

Compute an element-wise dot product between two matrices (i.e., >, Apg - Bpg): T =
A.vector_dot(B)

For this project you can specify molecular information like the charge, multiplicity, and number
of electrons directly in your code, but it is more elegant to parse these out of the Molecule object
itself. This is easily done as in Figure [3] Since your program assumes RHF, if you parse the
information this way, your program should check to make sure mult = 1 before it continues.

Figure 3: Using Psi4’s Molecule object to get information

charge = molecule.molecular_charge()

mult
7 =

molecule.multiplicity()

0

for A in range(molecule.natom()):

Z += molecule.Z(A)

ndocc = int(Z / 2) - (charge / 2) # number of doubly-occupied orbitals

Enuc

= molecule.nuclear_repulsion_energy()
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