
Introduction to Scientific Computing, Part I

C. David Sherrill

School of Chemistry and Biochemistry

Georgia Institute of Technology



Outline

• Requirements of scientific computing

• Some definitions

• Computer architectures

• Benchmarking

• Benchmarks for Quantum Chemistry



21st Century Computing:

• Very complex programs (100’s or 1000’s of developers)

• Graphical — ease of use critical

• Not much math

Examples: Graphical operating systems (Windows); word

processors; spreadsheets; large databases; graphics programs

(Photoshop); Web browsers; games



Scientific Computing:

• Complex programs (106 lines, perhaps 1-30 developers)

• No time to develop graphical interface

• Much math — floating point very important! “Computa-

tionally expensive.”

Needs of scientific computing can be vastly different than a

user-friendly graphical program. Java makes great applets but

is horribly slow for computations.



Some definitions

Bandwidth: The rate at which data can

flow.

Bus: A physical data pathway connecting,

e.g., the CPU to a graphics card or

other device.

Cache: Small storage area for frequently

accessed data which provides faster data

access.

CPU: Central Processing Unit, or “proces-

sor,” this is the brain of the computer

and does most computational work.

Disk: A magnetic storage device, typically

a hard disk drive, used to store data

which won’t fit in memory. Much slower

access than memory.



Floating point: Data representing a real

number, or operations (such as multi-

plication) on such data. Longer/costlier

than integers.

Instruction: An elementary, low-level

command that the CPU understands.

Each CPU has an “instruction set” that

it can interpret.

Integer: Data representing an integer, or

operations (such as multiplication) on

such data.

Kernel: The core of the operating system.

Linux is actually an OS kernel; the

support software comes from the GNU

project (MIT).

Memory: Typically refers to random ac-

cess memory (RAM) (or “physical



memory”). “Virtual memory” simulates

additional RAM by using disk space.

OS: Operating system. The kernel plus

essential support software (e.g., file

utility programs, system management

tools, graphical user interface).

Register: One of the handful of memory

locations on the CPU itself.

Swap space: (Also paging space) Disk

space used to store data which won’t

fit in physical memory, i.e., virtual

memory.

Virtual memory: Maps logical memory

addresses to physical memory addresses.

Program memory is divided into pages,

some of which may actually reside on

disk.



Word: A fixed number of bytes appropriate

for a given data type. Often 4 bytes (32

bits) for an integer and 8 bytes (64 bits)

for a floating point number.



RISC vs CISC

CISC (Complex Instruction Set Computers): Older machines,

many current and most older PC’s. Advantages: program

requires fewer instructions (fits in less memory, requires fewer

memory fetches). Disadvantages: compilers can’t figure out

how to take advantage of complex instructions (including

Pentium MMX and SSE instructions!).

RISC (Reduced Instruction Set Computers): Modern work-

stations (e.g., IBM, Compaq) beginning in mid 1980’s. PC’s

moving this way since 1990’s (IBM/Motorola/Apple PowerPC).

More memory now, faster access due to caches and pipelines

— advantages of CISC not as great. Easier to pipeline due to

smaller set of instructions.



Pipelines

Instructions typically take more than one clock cycle to execute.

In pipelining, after launching one instruction, you immediately

launch another on the next clock tick, without waiting for

the first one to complete. Possible for CISC, easier for RISC

(uniform instruction length, simple addressing modes).





Parallel RISC

Superscalar: Multiple pipelines (e.g., floating point and

integer pipelines). Depend on compiler to give good

mix of instructions and branch processor to oversee their

scheduling. Examples: IBM RS/6000, DEC Alpha, even

Intel Pentium.

Superpipeline: Break up stages of instruction into smaller,

simpler, faster stages, making pipeline go faster.

Long Instruction Word: Like superscalar but depend en-

tirely on compiler to make the instruction stream parallel;

puts RISC floating point and integer operations together

into big instruction.



Memory and Caches

Advances in memory technology have not kept up with advances

in processor speed. Hence, accessing memory substantially

delays computations. Caches store frequently accessed data in

a small, expensive, high-speed memory area. When we fetch a

new memory element, that element and the memory around it

are transferred to a cache line of the cache.

Direct Mapped Cache: If the computer has a 32K cache,

then in the direct mapped scheme, memory location 0 is

mapped to cache location 0, as are memory locations 64K,

96K, 128K, etc. Problem: if we need data elements more than

32K apart, we’ll never find the next item in the cache! (Cache

miss; cache thrashing).



Fully Associative Cache: Each cache line can map to any

memory location. Performs well, very expensive.

Set Associative Cache: Two or four (or more) direct mapped

caches side by side; less likely to miss if we hop back and forth

between two areas in memory.

REAL*4 A(1024), B(1024)

DO 10 I=1,1024

A(I) = A(I) * B(I)

10 CONTINUE

END



Memory Pages

In the virtual memory scheme, memory is divided into pages.

Each program addresses its memory as a block from 0 to N ,

even though this may be distributed nonsequentially in physical

memory. A page table translates virtual memory locations to

physical memory locations. Simple for the program, bad for

performance.

A translation lookaside buffer (TLB) is a special cache for page

tables, speeding up virtual to physical translation.

A page fault results when a requested memory location is not

in cache (cache miss) or in the TLB (TLB miss) or in the list

of valid pages (page invalid or on disk). TLB is refreshed and

new page is created or loaded from disk (swapped).



Benchmarking

User time: The time spent by the CPU on the user’s compu-

tation.

System time: The time spent by the system in tasks required

by the computation; typically I/O time.

Wall time: The actual time elapsed by a “clock on the

wall.” This is the most relevant time and the most useful

benchmark assuming the machine is not busy with other

things.

Standard Benchmarks: e.g., SPEC benchmarks

User Benchmarks: Most relevant



Suggested Reading

“High Performance Computing,” Kevin Dowd (O’Reilly,

Sebastopol, CA, 1993).

“C++ and C efficiency,” David Spuler (Prentice Hall, New

York, 1992).


